skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Courtel, Stéphanie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bulk heterojunction polymer solar cells based on a novel combination of materials are fabricated using industry‐compliant conditions for large area manufacturing. The relatively low‐cost polymer PTQ10 is paired with the nonfullerene acceptor 4TIC‐4F. Devices are processed using a nonhalogenated solvent to comply with industrial usage in absence of any thermal treatment to minimize the energy footprint of the fabrication. No solvent additive is used. Adding the well‐known and low‐cost fullerene derivative PC61BM acceptor to this binary blend to form a ternary blend, the power conversion efficiency (PCE) is improved from 8.4% to 9.9% due to increased fill factor (FF) and open‐circuit voltage (VOC) while simultaneously improving the stability. The introduction of PC61BM is able to balance the hole–electron mobility in the ternary blends, which is favourable for high FF. This charge transport behavior is correlated with the bulk heterojunction (BHJ) morphology deduced from grazing‐incidence wide‐angle X‐ray scattering (GIWAXS), atomic force microscopy (AFM), and surface energy analysis. In addition, the industrial figure of merit (i‐FOM) of this ternary blend is found to increase drastically upon addition of PC61BM due to an increased performance–stability–cost balance. 
    more » « less